Variations in Chromosome Structure & Function

Ch. 8

INTRODUCTION

- Genetic variation refers to differences between members of the same species or those of different species
 - Allelic variations are due to mutations in particular genes
 - Chromosomal aberrations are substantial changes in chromosome structure
 - These typically affect more than one gene
 - They are also called chromosomal mutations

Alterations in Chromosome Structure

- There are two primary ways in which the structure of chromosomes can be altered
 - The total amount of genetic information in the chromosome can change
 - Decrease: Deficiencies/Deletions
 - Increase: Duplications & Insertions
 - 2. The genetic material may remain the same, but is rearranged
 - Inversions
 - Translocations

Alterations in Chromosome Structure

Deletion

- loss of a chromosomal segment

Duplication

- repetition of a chromosomal segment
- Inversion
- A change in the direction of genetic material along a single chromosome

Translocation

- A segment of one chromosome becomes attached to a nonhomologous chromosome
 - Simple translocations
 - One way transfer
 - Reciprocal translocations
 - Two way transfer

Variations in Chromosome Structure: Deletions

- part of a chromosome is missin
- Deletions start with chromoson breaks induced by:
 - Heat or radiation (especially ionizing).
 - Viruses.
 - Chemicals.
 - Transposable elements.
 - Errors in recombination.
- Deletions do not revert, becaus the DNA is gone (degraded)

Fig. 8.2 A deletion of a chromosome segment

Variations in Chromosome Structure: Deletions

- The effect of a deletion depends on what was deleted.
 - A deletion in one allele of a homozygous wildtype organism may give a normal phenotype
 - while the same deletion in the wild-type allele of a heterozygote would produce a mutant phenotype.
 - Deletion of the centromere results in an acentric chromosome that is lost, usually with serious or lethal consequences.
 - No known living human has an entire autosome deleted from the genome.

Variations in Chromosome Structure: Deletions

- Human disorders caused by large chromosomal deletions are generally seen in heterozygotes, since homozygotes usually die.
 - The number of gene copies is important.
 - Syndromes result from the loss of several to many genes.
- Examples of human disorders caused by large chromosomal deletions:
 - Cri-du-chat ("cry of the cat") syndrome (OMIM 123450), resulting from deletion of part of the short arm of chromosome 5 (Figure 8.4).
 - The deletion results in severe mental retardation and physical abnormalities.

Variations in Chromosome Structure: Duplications

Duplications result from doubling of chromosomal segments, and occur in a range of sizes and locations (Figure 8.5).

Fig. 8.5 Duplication, with a chromosome segment repeated

Variations in Chromosome Structure: Duplications

-Tandem duplications are adjacent to each other.

-Reverse tandem duplications result in genes arranged in the opposite order of the original.

-Tandem duplication at the end of a chromosome is a terminal tandem duplication

Duplications add material to the genome

(a) Types of duplications

Tandem duplications

Normal chromosome	A	В	С	D	Е	F	G		
Same order	A	В	С	В	С	D	Е	F	G
Reverse order	A	в	С	С	В	D	E	F	G
Nontandem (disperse	ed) di	uplic	atio	ns					
Same order	A	В	С	D	Е	F	В	С	G
Reverse order	A	В	С	D	E	F	С	В	G

(b) Chromosome breakage can produce duplications

Variations in Chromosome Structure: Duplications

- An example is the Drosophila eye shape allele, Bar, that reduces the number of eye facets, giving the eye a slit-like rather than oval appearance
- (Figure 8.7).
 - The *Bar* allele resembles an incompletely dominant mutation:
 - Females heterozygous for *Bar* have a kidney-shaped eye that is larger and more faceted than that in a female homozygous for *Bar*.
 - Males hemizygous for *Bar* have slit-like eyes like those of a *Bar*/*Bar* female.
 - Cytological examination of chromosomes showed that the *Bar* allele results from duplication of a small segment (16A) of the X chromosome.

Fig. 8.7 Chromosome of Drosophila strains

Duplication loops form when chromosomes pair in duplication heterozygotes

In prophase I, the duplication loop can assume different configurations that maximize the pairing of related regions

Variations in Chromosome Structure: Inversions

- Inversion results when a chromosome segment excises and reintegrates oriented 180° from the original orientation.
 - There are two types (Figure 8.8):

Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing as Benjamin Cummings

A

a

0

B

E

F

G

H

Variations in Chromosome Structure: Inversions

- Linked genes are often inverted together.
 - The meiotic consequence depends on whether the inversion occurs in a homozygote or a heterozygote.
- A homozygote will have normal meiosis.
- The effect in a heterozygote depends on whether crossing-over occurs.
 - If there is no crossing-over, no meiotic problems occur.
 - If crossing-over occurs in the inversion, unequal crossover may produce serious genetic consequences.

Inversion heterozygotes reduce the number of recombinant progeny

Inversion loop in heterozygote forms tightest possible alignment of homologous regions

Recombination involving inversions

Heterozygous Pericentric Inversion:

- One normal gamete
- One gamete with inversion
- One gamete with a duplication and deletion.
- One gamete with reciprocal duplication and deletion.

Heterozygous Paracentric Inversion:

- One normal gamete
- One gamete with inversion
- Two deletion products
- Some material lost.

Gametes produced from pericentric and paracentric inversions are imbalanced

Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing

Variations in Chromosome Structure: Inversions

- In an inversion, the total amount of genetic information stays the same
 - Therefore, the great majority of inversions have no phenotypic consequences
- In rare cases, inversions can alter the phenotype of an individual
 - Break point effect
 - The breaks leading to the inversion occur in a vital gene
 - Position effect
 - A gene is repositioned in a way that alters its gene expression
- About 2% of the human population carries inversions that are detectable with a light microscope
 - Most of these individuals are phenotypically normal
 - However, a few an produce offspring with genetic abnormalities

Translocations

- A chromosomal translocation occurs when a segment of one chromosome becomes attached to another.
- There are two main types of medically important translocations:
 - 1. <u>Reciprocal (balanced) Translocations</u>
 - 2. <u>Robertsonian (unbalanced) Translocations</u>
- Both types of translocations are capable of causing disease in humans.

Fig. 8.11 Translocations

Reciprocal Translocations

- In reciprocal translocations two non-homologous chromosomes exchange genetic material
 - Reciprocal translocations arise from two different mechanisms
 - I. Chromosomal breakage and DNA repair
 - 2. Abnormal crossovers
- Reciprocal translocations lead to a rearrangement of the genetic material
 - not a change in the total amount
 - Thus, they are also called balanced translocations.

Robertsonian Translocations

- In Robertsonian Translocations the transfer of genetic material occurs in only one direction
- Robertsonian translocations are associated with phenotypic abnormalities or even lethality.
- Example: Familial Down Syndrome
 - In this condition, the majority of chromosome 21 is attached to chromosome 14.
 - The individual would have three copies of genes found on a large segment of chromosome 21
 - Therefore, they exhibit the characteristics of Down syndrome

Robertsonian Translocation

- This translocation occurs as follows:
 - Breaks occur at the extreme ends of the short arms of two non-homologous acrocentric chromosomes
 - The larger fragments fuse at their centromeic regions to form a single chromosome
 - The small acrocentric fragments are subsequently lost.
 - This type of translocation is the most common type of chromosomal rearrangement in humans.
- Robertsonian translocations are confined to chromosomes 13, 14, 15, 21
 - The acrocentric chromosomes

Meiosis in Robertsonian Translocation

Figure 2-23 Human Molecular Genetics, 3/e. (© Garland Science 2004)

Chromosomal Mutations and Human Tumors

- Most human malignant tumors have chromosomal mutations.
 - The most common are translocations
 - There is much variation in chromosome abnormalities, however, and they include simple rearrangements to complex changes in chromosome structure and number.
 - Many tumor types show a variety of mutations.
 - Some, however, are associated with specific chromosomal abnormalities.

Translocations

- Usually phenotypically normal; no net loss or gain of material in most cases.
- If breakpoint alters promoter context, gene regulation may be altered

– e.g.: Burkitt Lymphoma: t(8;14):

- puts the protooncogene *c-myc* next to the immunoglobulin heavy chain locus,
 - resulting in overexpression of *c-myc*
- If breakpoint occurs within a gene, the gene function may be altered

– e.g.: CML : t(9;22): Bcr-Abl fusion product.

t(14;18): Folicular Lymphoma

t(8;14): Burkitt Lymphoma

Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing as Benjamin Cummings

t(9;22): Chronic Myelogenous Leukemia

Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing as Benjamin Cummings

Homework Problems

Chapter 8

1, 14a, 17a

Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing as Benjamin Cummings